
E
LSL Support Procedures

Introduction . E-2
LSLAddProtocolID . E-3
LSLDeRegisterMLID . E-5
LSLFastRcvEvent . E-6
LSLFastSendComplete . E-7
LSLGetMaximumPacketSize . E-8
LSLGetSizedRcvECBRTag . E-9
LSLHoldRcvEvent . E-10
LSLRegisterMLIDRTag . E-11
LSLReturnRcvECB . E-13
LSLSendComplete . E-14
LSLServiceEvents . E-15
LSLUnBindThenDeRegisterMLID . E-16

Version 1.00 E – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

MLIDs that are developed using the MSM do not need to make any
calls to Link Support Layer routines. Because sample code provided
shows calls to the LSL, this section is provided as a reference for
developers. Novell recommends that developers not use these calls, but
use the standard MSM interface. The developer may use the routines
in this chapter if some portion of the driver absolutely must interact
directly with the LSL.

Table E.1 is a list of the completion codes returned by the LSL.

Table E.1 LSL Completion Codes

Completion Code Message

00000000h Successful

FFFFFF81h BadCommand

FFFFFF82h BadParameters

FFFFFF83h DuplicateEntry

FFFFFF84h Fail

FFFFFF85h ItemNotPresent

FFFFFF86h NoMoreItems

FFFFFF87h NoSuchDriver

FFFFFF88h NoSuchHandles

FFFFFF89h OutOfResources

FFFFFF8Ah RxOverflow

FFFFFF8Bh InCriticalSection

FFFFFF8Ch TransmitFailed

FFFFFF8Dh PacketUndeliverable

FFFFFFFCh Cancelled

E – 2 Version 1.00

Appendix E • LSL Support Procedures

LSLAddProtocolID

On Entry

EAX points to the 6 byte protocol ID (PID) being added

ECX points to the frame type string (which is byte-length preceded

and zero-terminated)

EDX points to the protocol stack ID string (which is byte-length

preceded and zero-terminated)

Interrupts are in any state

Call at process time only

On Return

EAX has a completion code

(Normally drivers should ignore the completion code.)

Flags Zero flag is set according to EAX

Interrupts are preserved

Note all other registers are destroyed

Completion Codes

00000000h Successful: The LSL successfully added the new Protocol ID.

FFFFFF82h BadParameters: The length of the string parameter exceeded

15 characters.

FFFFFF83h DuplicateEntry: There is already a protocol ID registered for

the given media/stack combination.

FFFFFF89h OutOfResources: The LSL had no resource to register

another Protocol ID.

Description LSLAddProtocolID allows the driver to tell the LSL the names and
protocol ID (PID) of each protocol stack it supports.

The driver’s initialization procedure should call this routine to add the
default PID for IPX.

IPX PIDs for some frame types are:

Ethernet_802.3 0
Ethernet_II 8137h
Ethernet_802.2 E0h
Ethernet_Snap 8137h

Token-Ring E0h
Token-Ring_Snap 8137h

Note: If the PID values are less than 6 bytes, pad the most significant bytes
of the 6-byte PID with zeroes.

Version 1.00 E – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

ProtocolID db 0, 0, 0, 0, 81h, 37h ;EII PID
ProtocolName db 3, ’IPX’, 0 ;IPX Protocol Stack
FrameTypeString db 11, ’ETHERNET_II’, 0 ;EII String

lea eax, ProtocolID ;Pointer to 6-byte PID
lea edx, ProtocolName ;Pointer to protocol name string
lea ecx, FrameTypeString ;Pointer to frame type string

call LSLAddProtocolID
jmp DoneAddingProtocolTypes

E – 4 Version 1.00

Appendix E • LSL Support Procedures

LSLDeRegisterMLID

On Entry

EBX has the board number

Interrupts are in any state

Call at process time only

On Return

EAX has a completion code

Interrupts are disabled, but could have been enabled

Note all other registers are destroyed

Completion Codes

00000000h Successful: The LSL successfully deregistered the MLID.

FFFFFF82h BadParameters: The LSL did not have an MLID registered as

the board number passed in EBX.

Description The driver calls LSLDeRegisterMLID to deregister a logical board from
the LSL and to inform all protocol stacks bound to that board that the
board is no longer available.

If the adapter is not having trouble sending out packets, the driver
should use LSLUnBindThenDeRegisterMLID.

Example

push ebp ;DeRegister destroys all registers
push ebx
movzx ebx, [ebx].CDriverBoardNumber ;Get the board number
call LSLDeRegisterMLID ;DeRegisterMLID
pop ebx
pop ebp

Version 1.00 E – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LSLFastRcvEvent

On Entry

ESI points to the receive buffer to be processed

Interrupts are in any state

Call at process or interrupt time

On Return

Interrupts are disabled, but could have been enabled

Note all registers are destroyed

Description This routine improves the performance of drivers that call
LSLServiceEvents immediately after calling LSLHoldRcvEvent.
LSLFastRcvEvent dispatches the ECB directly to the protocol stack.

Be aware that LSLFastRcvEvent may enable interrupts. Consequently,
if the board service routine runs with interrupts disabled, you may
want to structure the driver so that either this is the last call the board
service routine makes before issuing a ret, or that the board service
routine can handle being re-entered at the point where
LSLFastRcvEvent is called.

If the board service routine masks off the PIC instead of disabling
interrupts, you can use LSLFastRcvEvent at any point in the receive
routine without worrying about being re-entered.

The driver must ensure that the following fields of the ECB are filled
in before calling this routine:

ProtocolID
BoardNumber
ImmediateAddress
DriverWorkspace
PacketLength
FragmentOffset
FragmentSize

Note: This process may call the DriverSend routine of the calling board and
may enable the interrupts.

Example

mov esi, ECBHoldBuffer
call LSLFastRcvEvent

E – 6 Version 1.00

Appendix E • LSL Support Procedures

LSLFastSendComplete

On Entry

ESI points to the ECB that was sent

Interrupts are in any state

Call at process or interrupt time

On Return

Interrupts are disabled, but could have been enabled

Note all registers are destroyed

Description This routine improves the performance of drivers that call
LSLServiceEvents immediately after calling LSLSendComplete.
LSLFastSendComplete immediately returns the ECB to the LSL.

Be aware that LSLFastSendComplete may enable interrupts.
Consequently, the send routine could be re-entered before
LSLFastSendComplete returns.

Example

push ebp ;Save pointer to adapter data space
call LSLFastSendComplete ;Clean up ECB
pop ebp ;Restore pointer to adapter data space

Version 1.00 E – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LSLGetMaximumPacketSize

On Entry

Interrupts are in any state

Call at process or interrupt time

On Return

EAX has the maximum physical packet size that the LSL supports.

Interrupts are preserved

Note all other registers are preserved

Description LSLGetMaximumPacketSize returns the maximum packet size the LSL
can accommodate.

Example

call LSLGetMaximumPacketSize ;EAX contains maximum packet size

E – 8 Version 1.00

Appendix E • LSL Support Procedures

LSLGetSizedRcvECBRTag

On Entry

EAX points to valid resource tag

ESI contains the packet size, including all headers

Interrupts are in any state

Call at process or interrupt time

On Return

EAX has a completion code

ESI points to the receive ECB

Z flag set according to EAX

Interrupts are disabled

Note no other registers are destroyed

Completion Codes

00000000h Successful: No errors occurred.

FFFFFF89h OutofResources: The packet size exceeded the maximum

ECB size or an ECB was not available.

Description The driver calls LSLGetSizedRcvECBRTag to get a receive buffer for a
received packet. The LSL returns an ECB with a buffer large enough
to hold the received frame. The length passed in the ESI register
should contain the length of all protocol and hardware headers. For
example, for an Ethernet II frame, pass DataLength + 14. If a receive
ECB is not available, discard the packet.

Drivers that take advantage of bus-mastering DMA must pre-allocate
ECBs. These drivers should make a call to LSLGetMaximumPacketSize

and then put either the returned value or the maximum packet length
the board can receive--whichever is less--into ESI before calling
LSLGetSizedRcvECBRTag.

Example

mov esi, ReceiveHeaderRByteCount ;Get packet size from card
mov eax, ECBRTag ;Get resource tag
call LSLGetSizedRcvECBRTag ;Get ECB
jnz NoECBAvailable ;Keep copy in ECX

Version 1.00 E – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LSLHoldRcvEvent

On Entry

ESI points to the receive ECB to be processed

Interrupts are in any state

Call at process or interrupt time

On Return

ESI preserved

EDI preserved

EBP preserved

Interrupts are disabled, and the call does not enable interrupts.

Description If the driver does not use LSLFastRcvEvent, LSLHoldRcvEvent may be
called to hand a receive ECB (together with a received packet) to the
LSL.

The following fields should be set prior to calling this routine:

ProtocolID
BoardNumber
ImmediateAddress
DriverWorkSpace (Most Significant Byte with destination

address type)
packetlength
PacketOffset
PacketSize

Note: The driver cannot modify any fields in the ECB after making this call.

After calling LSLGetSizedRcvECBRTag and reading the packet into the
receive ECB, the board service routine calls LSLHoldRcvEvent to queue
the receive ECB on the LSL’s hold queue. Before leaving the board
service routine, the driver calls LSLServiceEvents to dispatch the ECBs
on the hold queue.

Example

call LSLHoldRcvEvent ;ESI points to the ECB

E – 10 Version 1.00

Appendix E • LSL Support Procedures

LSLRegisterMLIDRTag

On Entry

EAX points to the MLID send routine

EBX contains the MLID resource tag

ECX points to the MLID configuration table

EDX contains the Loadable Module Handle (this is passed to the

driver at initialization. See Figure 6.1)

ESI points to the driver control handler routine

Interrupts are in any state

Call only at process time

On Return

EAX has a completion code

EBX has the assigned board number

ECX has the maximum buffer size of receive ECBs

Z flag set according to EAX

Interrupts are preserved

Note all other registers are destroyed

Completion Codes

000000000h Successful: No errors occurred.

FFFFFF89h OutofResources: There was not enough memory to register

MLID.

FFFFFF82h BadParameters: The resource tag was invalid.

Description The driver’s initialization procedure calls LSLRegisterMLIDRTag to
register a logical board.

By making this call, DriverInitialize gives the LSL pointers to a send
procedure, a control procedure, and the configuration table for the
logical board.

The driver should adjust the three packet size fields--
CDriverMaximumSize, CDriverMaxRecvSize, CDriverRecvSize--
according to the "Maximum Packet Size Table" shown in Chapter 4.

Version 1.00 E – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

mov ecx, ebx ;ECX points to configuration table
mov ebx, MLIDRTag ;EBX points to MLID resource tag
mov eax, OFFSET DriverSend ;EAX points to MLID send routine
mov esi, OFFSET DriverControl ;ESI points to the driver control

;routine
mov edx, [ESP + Parm0] ;EDX has the loaded module handle
push ecx ;Save BoardBase
push ebp ;Save AdapterBase

call LSLRegisterMLIDRTag ;Register MLID

pop ebp ;Restore AdapterBase
pop edx ;Restore BoardBase into EDX
jnz ErrorRegisteringMLID ;Exit initialization if error

;registering

mov [edx].CDriverBoardNumber, bx

cmp [edx].CDriverMaximumSize, ecx ;Adjust packet size fields?
jbe Short NoAdjust

mov [edx].CDriverMaximumSize, ecx
sub ecx, FrameHeaderSize
mov [edx].CDriverMaxRecvSize, ecx
mov [edx].CDriverRecvSize, ecx

NoAdjust:

E – 12 Version 1.00

Appendix E • LSL Support Procedures

LSLReturnRcvECB

On Entry

ESI points to the receive ECB

Interrupts are in any state

Call at process or interrupt time

On Return

EAX destroyed

Interrupts are disabled

Note All other registers preserved

Description The driver calls LSLReturnRcvECB to return an unneeded receive ECB
to the LSL.

Example

call LSLReturnRcvECB ;Return ECB

Version 1.00 E – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LSLSendComplete

On Entry

ESI points to the ECB that was sent

Interrupts are in any state

Call at process or interrupt time

On Return

EAX destroyed

Interrupts are disabled, and will not have been enabled

Description If the driver does not use LSLFastSendComplete, it calls
LSLSendComplete to return a send ECB to the LSL after it has finished
processing the ECB. This call does not return the ECB to its owner; it
simply queues the ECB and returns. The driver should call
LSLServiceEvents at the end of the board service routine and/or
DriverSend procedure.

Example

call GetNextSend ;Anything in send queue?
jnz PollAgain ;No: Check for receives

call StartSend ;Yes: Initiate a send
call LSLSendComplete ;Queue ECB
jmp PollAgain ;Check for receives

E – 14 Version 1.00

Appendix E • LSL Support Procedures

LSLServiceEvents

On Entry

Interrupts are in any state

Call at process or interrupt time

On Return

Interrupts are disabled, but could have been enabled

Note all registers are destroyed

Description If the driver does not use LSLFastRcvEvent or LSLFastSendComplete,
it must call LSLServiceEvents to unqueue any packets that were
queued by LSLHoldRcvEvent or LSLSendComplete.

The board service routine calls LSLServiceEvents after processing all
sends or receives. This is the last thing the board service routine does
before returning. All hardware processing must be completed, and the
board service routine must be ready to be called by a new interrupt.

The LSLServiceEvents routine routes all receive packets to the correct
protocol stack.

Note: If the driver uses LSLFastSendComplete and LSLFastHoldRcvEvent for
completing events, it does not need to call LSLServiceEvents.

Example

call LSLServiceEvents ;Let OS service queue
ret

Version 1.00 E – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LSLUnBindThenDeRegisterMLID

On Entry

EBX has the board number

Interrupts are in any state

Call only at process time

Note LAN board must not be in a critical section

On Return

Interrupts are disabled, but could have been enabled

Note all other registers are destroyed

Description The driver’s DriverRemove procedure calls this procedure to unbind the
specified LAN board from all protocol stacks and then deregister the
board. The driver’s remove procedure should call this routine
(or LSLDeRegisterMLID) for each logical board that the physical card
supports.

This routine is identical to LSLDeRegisterMLID with the addition that
LSLUnbindThenDeRegisterMLID allows protocol stacks to attempt to
transmit packets advising other machines on the network that this
connection is going down. For this reason, you should not use this call
in situations where the hardware is having trouble sending packets (e.g.
fatal hardware error).

Example

push ebp ;UnBind destroys all registers
push ebx
movzx ebx, [ebp].CDriverBoardNumber ;EBX has the driver board number
call LSLUnBindThenDeRegisterMLID ;UnBind and DeRegister MLID
pop ebx
pop ebp

E – 16 Version 1.00

